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SUMMARY

CFD modelling of ‘real-life’ thermo-fluid processes often requires solutions in complex three-dimensional
geometries, which can result in meshes containing aspects that are badly distorted. Cell-centred finite
volume methods (CC-FV), typical of most commercial CFD tools, are computationally efficient, but can
lead to convergence problems on meshes that feature cells with highly non-orthogonal shapes. The control
volume-finite element method (CVFE) uses a vertex-based approach and handles distorted meshes with
relative ease, but is computationally expensive. A combined vertex-based—cell-centre technique (CFVM),
detailed in this paper, allows solutions on distorted meshes where purely cell-centred solutions procedures
fail. The method utilizes the ability of the vertex-based approach to resolve the flow field on a distorted
mesh, enabling well established cell-centred physical models to be employed in the solution of other
transported quantities. The vertex-based flow code is verified against a manufactured 3D solution and
error norms are compared on meshes with various degrees of distortion. The CFVM method is validated
with benchmark solutions for thermally driven flow and turbulent flow. Finally, the method is illustrated
on three-dimensional turbulent flow over an aircraft wing on a distorted mesh where purely cell-centred
techniques fail. The CFVM is relatively straightforward to embed within generic CC based CFD tools
allowing it to be employed in a wide variety of processing applications. Copyright q 2006 John Wiley
& Sons, Ltd.

Received 4 November 2005; Revised 28 March 2006; Accepted 29 March 2006

KEY WORDS: vertex-based; cell-centred; hybrid; distorted mesh; non-orthogonal

1. INTRODUCTION

In the numerical modelling of processes involving fluids the flows of interest generally occur
in geometrically complex domains. The accuracy of CFD analysis not only depends upon the
quality of the discretization approaches within the target code to model the physical process,
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but also on the ability to solve on a mesh that matches the true geometry of the physical
domain. Significant advances have been made in the development of numerical methods for
the solution of flow on unstructured meshes. The most frequently used unstructured mesh dis-
cretization methods are the finite element method (FEM) [1] and the finite volume method (FV)
[2]. However, it is the Finite Volume principles, of applying conservation laws locally to control
volumes, which lend themselves to easy physical interpretation (such as, fluxes, source terms
and local conservation principles). This has led to the FV method being the preferred tech-
nique used in most of the commercially available CFD codes. Even successful finite element
CFD codes, such as, FLITE3D [3], originally developed at the University of Wales Swansea and
now extensively used within the aerospace industry [4], are formulated to ensure local conser-
vation using a finite volume framework. There are a number of FV approaches, usually either
vertex-centred, where the unknowns are defined at the mesh nodes, or cell-centred, where the
unknowns are defined at the element centroid. The most widely used is the cell-centred (CC)
approach, which is employed in many CFD codes (e.g. CFX [5], FLUENT [6], STAR-CD [7] and
PHYSICA [8]). This technique is computationally efficient, on a highly orthogonal mesh, using
simple approximations to discretize the terms in the transport equation, it has low memory
requirements and fast simulation times. However, the method is not robust on a highly non-
orthogonal mesh. Corrections have to be made to the usual discretization process to account
for non-orthogonality in the mesh, see Section 3. On distorted grids these corrections are only
first-order accurate [9]. Local errors appear in the solution dependent on the extent of mesh dis-
tortion and the solution may diverge. Peric [10] investigated this effect on distorted meshes and
proposed grid refinement and smoothing to reduce the error. Moulinec [11] investigated several
different interpolation schemes to improve the derivatives at the cell faces on distorted meshes.
Other authors [12, 13] proposed different interpolation schemes based on Taylor series expansions.
Lehnhauser [14] reported significantly improved accuracy with a multi-dimensional Taylor series
expansion scheme, which ensured second-order accuracy, even on strongly distorted meshes. The
problems encountered in discretizing the transport equations on distorted meshes are exacerbated
when employing pressure-correction schemes in the solution of the incompressible Navier–Stokes
equations. Addition of the non-orthogonal correction terms in the pressure-correction equation is
expensive and complex and it is common practice to omit these terms [15, 16]. However, omission
or simplification of these terms can introduce stability problems into the solution process and lead
to difficulties with convergence on highly distorted meshes. Since in complex geometries it is often
not possible to have a good quality mesh over the entire domain, many authors have sought to
address this problem [17–20].

Various FV discretization techniques have been developed for unstructured meshes including,
edge-based schemes that employ dual control volumes and edge-based data structures [2, 21–23] as
well as others who use cell-based gradient reconstruction [24–26] who used cell vertex techniques
[27, 28], who employed a vertex-centred scheme for flow past complex geometries and who store
solved variables at the cell-circumcentres to enable solutions on unstructured meshes [29, 30].
Any discretization technique that employs the standard linear central differencing scheme can
encounter difficulties when approximating the control volume face derivative on a non-orthogonal
grid. Standard schemes are only sufficient if the points involved in calculating control volume face
values are connected by a straight line, which is normal to the boundary face, as is the case on an
orthogonal mesh. On complex grids, this is not usually the case and the accuracy of the scheme
deteriorates in areas of poor quality. In multi-physics problems, such as, dynamic fluid–structure
interaction, even if one starts with a high quality mesh, distortion can occur during the solution
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process, see Reference [31], for example, who discusses this problem. CD-Adapco has sought to
address this problem by employing polyhedral control volumes with essentially VB discretization
schemes. It has recently introduced STAR-CCM+ [32], a multi-physics solver based on polyhedral
meshes. They claim that good quality meshes consisting of polyhedral elements can be generated
more easily than tetrahedral meshes, whilst they have more neighbouring points and require more
storage and compute time per cell, they give higher accuracy in computing gradients of dependent
variables. In this context, it is worth noting their claim that polyhedral control volumes can be
generated from any type of mesh by defining a dual control volume, potentially providing additional
flexibility in mesh generation for very complex geometries.

The control volume-finite element method (CVFE), developed by Prakash [33] and described
by Baliga [34] has successfully been applied to complex flow problems with irregular geome-
tries [35]. This method can be viewed in a finite volume context as a vertex-based finite volume
method (VB) [36]. A polyhedron control volume is constructed around the mesh vertex and the
local variation of a variable within a mesh element is described by simple piecewise polyno-
mial functions allowing distorted meshes to be handled with relative ease. This flexibility of
applying the VB discretization technique to arbitrary irregular meshes is appealing. However,
the method requires extensive storage/topological information and the computational cost is far
more expensive than the cell-centred technique. Combining aspects of both the FEM and FVM
has become increasingly popular and has been applied in a number of research areas. A mixed
finite element-finite volume method, originally developed by Dervieux [37] has been employed
by many in the simulation of turbulent flow, including 3D turbulent compressible flow [38] and
Large Eddy simulations [39]. This method uses finite element discretization for the diffusive part
of the Navier–Stokes equations and finite volume computations for all other terms. Durlofsky [40]
combined finite volume-finite elements in the solution of multi-phase flow in porous media.
Here the pressure equation is discretized using finite elements and the fluid phases are computed
using the finite volume method. This method has been applied by Mazzia and Putti [41] and
Chavent et al. [42] amongst others. Hybrid finite volume-finite elements have also been employed
for viscoelastic flows [43]. Here the FEM is applied to the continuity and momentum equations
and the FVM to the constitutive equations for stress. Chan [44] used a finite volume formulation
for the 3D Navier–Stokes equations of incompressible flow and a finite element discretization of
the pressure-correction equation. In the foregoing methods, although not an exhaustive list, the
cell–vertex finite volume method has commonly been employed on triangle–tetrahedral meshes.
The variables are all stored at the same locations, the mesh vertices. McBride [45] investigated the
CC and VB approaches in the solution of the incompressible Navier–Stokes equations. Co-located
and partially staggered, i.e. velocity CC and pressure VB and vice versa, solutions were compared
on unstructured skewed meshes. The co-located VB approach was shown to handle the distorted
meshes with relative ease. Solutions obtained on the skewed meshes were comparable with solu-
tions obtained on a uniform Cartesian mesh. Whereas, the partially staggered hybrid approaches
enabled solutions where purely CC techniques failed, the results obtained on the distorted mesh
contained non-orthogonal errors.

This paper employs a combined vertex-based—cell-centre technique (CFVM) in the solution of
thermal and turbulent flow. The method utilizes the vertex-based approach to resolve the flow field
and employs cell centred discretization for all other transported variables. Resolving the flow field
using VB techniques allows flow solutions on a distorted mesh, thus enabling well established
cell-centred physical models to be employed in the solution of other transported quantities. The
claim is that the CFVM approach allows solutions on highly distorted meshes that defeat purely
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cell-centred solutions and can be employed within generic CC based CFD tools. The CFVM is
the vertex based method implemented within the host CFD code PHYSICA, [46] which provides
a 3D unstructured mesh FV framework for multi-physics modelling, allowing existing CC physics
models to be utilized. The motivation for this paper was to evaluate the CFVM method using
benchmark problems for thermally driven flow and turbulent flow under circumstances where the
quality of the mesh used is increasingly degraded. The objectives here are to evaluate how well the
CFVM approach compares with a conventional CC discretization and to assess how well the former
copes with mesh quality degradation in terms of convergence behaviour and solution accuracy.
The assessment is completed with a three-dimensional case, flow over an aircraft wing, on a good
quality mesh and after mesh degradation.

2. GOVERNING EQUATIONS

The starting point for FV procedures is the general transport equation for a scalar variable, �,
Equation (1). The key step of the FV method is the integration of the transport equation over each
control volume, as well as over time, and a solution is sought which makes each of these integrals
equal to zero

�(q/)

�t
+ ∇ · (qu/) = ∇ · (�∇/) + S� (1)

The momentum transport equations can be cast in the same general form as (1), with � equal to
the components of velocity u, v or w and � = �. The pressure gradient term that forms the main
momentum source term is written separately. The equations are given using tensor notation

�(�ui )

�t
+ �(�u jui )

�x j
− �

�x j

(
�

�ui
�x j

)
= Si − �p

�xi
(2)

The velocity field must also satisfy mass conservation

��

�t
+ �(�ui )

�xi
= 0 (3)

Applying the FV methodology equations (2) and (3) are integrated over each control volume.
The momentum equations (2) are integrated over a vertex-based control volume using CVFE
techniques; the components of velocity are solved and stored at the mesh nodes. The continuity
equation (3) is transformed into a pressure equation and also integrated over a vertex based control
volume, pressure is solved and stored at the mesh nodes.

Equations describing the transport of any other scalar variable need to be discretized over the
element-based control volume using well-established cell-centred techniques. The equations for
the models used in this paper are as follows.

2.1. Thermally driven flow

The general equation governing heat transfer is

�(qcT)

�t
+ ∇ · (qcuT) = ∇ · (k∇T) + ST (4)
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The buoyancy forces are calculated using the Boussinesq approximation. This approximation results
in a source per unit volume which enters the i ′ momentum equation as

Si =−qbgi (T − Tref) (5)

2.2. Turbulent flow

The k–� model is employed for turbulent flow which uses the following equations for the solution
of k and �. The turbulent kinetic energy equation is given by [47]

�qk
�t

+ ∇ · (quk) =∇ ·
([

�lam + qmt
rk

]
∇k
)

+ qmtG − qe (6)

and the dissipation rate equation is as follows:

�qe
�t

+ ∇ · (que) =∇ ·
([

�lam + qmt
r�

]
∇e
)

+ C1qmtG
e

k
− C2q

e2

k
(7)

where the rate of generation of the turbulent kinetic energy, G, is given by

G= 2

([
�u
�x

]2
+
[
�v
�y

]2
+
[
�w
�z

]2)
+
(

�u
�y

+ �v
�x

)2

+
(

�u
�z

+ �w
�x

)2

+
(

�w
�y

+ �v
�z

)2

(8)

The turbulent viscosity is related to k and � by

lt = qC�
k2

e
(9)

The values of empiric constants employed in Equations (6)–(9) are the standard values [47]
C� = 0.09, �k = 1.0, �� = 1.3, C1 = 1.44, C2 = 1.92 (10)

3. DISCRETIZATION APPROACH

In the CFVM method equations (2) and (3) are discretized over a vertex-based control volume.
The mesh element is subdivided into a number of sub-control volumes by connecting the element
centroid to the element face centre. The sub-control volumes are assembled around the mesh vertex
to form the vertex-based control volume, shown in Figure 1, for a two-dimensional quadratic mesh.
The control volume associated with Equations (4), (6) and (7) is simply the mesh element. A detailed
description of the vertex-based discretization process is given in Reference [48] and cell-centred
discretization process is given in Reference [9].

In the vertex-based approach the local variation of a variable � within an element is de-
scribed by simple piecewise polynomial functions. The interpolation functions employed here are
given in Reference [36] who used them in structural analysis. The variables and co-ordinates are
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Figure 1. Vertex-based control volume.

approximated, in local co-ordinates as

ui (s, t, u) =
n∑
j=1

N j (s, t, u)ui j

p(s, t, u) =
n∑
j=1

N j (s, t, u)p j

xi (s, t, u) =
n∑
j=1

N j (s, t, u)xi j

(11)

where n is the number of nodes of an element. The use of elemental shape functions allows the
direct computation of fluxes in the required direction even on a non-orthogonal mesh. For a general
variable, face gradients can easily be calculated using the derivatives of the interpolation functions,
thus (

�/
�xi

)
f

=
n∑
j=1

�N j

�xi
/i (12)

In the cell-centred discretization approach, the face derivatives require special treatment on a non-
orthogonal mesh. If the mesh is orthogonal, vectors v and n in Figure 2 are parallel and the face
derivative in the face normal direction is simply

�/
�n

= �/
�v

(13)

On a non-orthogonal mesh the face normal vector can be written as a component in the v direction
plus a tangential component of the form

n= (v · n)v + n (14)
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Figure 2. Non-orthogonal correction.

So it is possible to split the differential with respect to the normal in terms of an orthogonal
contribution and a non-orthogonal correction term

�/
�n

= b�/
�v

+ n�/
�t

(15)

where the vector b is chosen to be parallel to v and t is a unit vector in the direction n.
Many possible approaches exist to satisfy Equation (15). Jasak [49] outlines and compares

the most common approaches. The source code keeps the non-orthogonal correction as small as
possible by making b and n orthogonal.

3.1. Pressure–velocity coupling

Potential problems can be encountered with CFD numerical methods that store both pressure and
the components of velocity at the same location. Equal order methods that use linear interpolation
can lead to checker boarding in the pressure and velocity fields. Several specialized interpolation
schemes for co-located non-staggered arrangements were proposed in the early 1980s with small
variations, the most widely used being Rhie Chow [50] which is employed within the host code,
PHYSICA, for the cell-centred discretization method. There are unresolved problems with the Rhie
Chow scheme. Croft [9] showed that the Rhie Chow interpolation method can lead to non-physical
cell centred values despite satisfying continuity. Majumdar [51] and Choi [52] reported that the
converged velocity field is slightly dependent on relaxation factor and time step size. Kawaguchi
[53] reported that Rhie Chow interpolation could cause checkerboard pressure predictions. Prakash
[33] developed a co-located equal-order method for the CVFE method which does not suffer from
spurious checkerboard pressure fields. The key idea is similar to using a staggered grid. A new
face velocity field is defined which is dependent on the pressure difference between adjacent nodal
points. This new velocity field is substituted into the discretized continuity equation so that the
generation of a checkerboard pressure field is avoided.
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In the solution of the Navier–Stokes equations, the CFVM employs an adaptation of the revised
SIMPLER method [54]. Correct pressure and velocity coupling is ensured by the method of Prakash
and Patankar [33]. The discretized momentum equations (2) lead to a system of algebraic equations
of the form

aiui =∑anbunb + bi − ∇pi (16)

where i denotes the component of velocity and nb its neighbours. In order to prevent checker-
boarding in the final solution the discretization of either the momentum or continuity equations
must ensure that face velocity values are defined in terms of adjacent pressure values. In co-located
formulations the face velocity is not defined purely as a linear interpolation of adjacent cell values
as this would lead to face values defined in terms of adjacent pressure values. Effectively the
pressure gradient term resulting from linear interpolation of the adjacent cell values is removed
and a new pressure gradient term, written in terms of adjacent pressure values, is added to pre-
vent checkerboard pressure predictions. In the CFVM formulation it is the discretization of the
continuity equation that prevents checkerboard pressure predictions.

The discretized momentum equation (16) can be rearranged as follows:

ui =
∑

nb a
ii
nb(ui )nb + bii

ai
− (�p/�xi )(∇V )cv

ai
(17)

A pseudo-velocity field can be defined from Equation (17) which is used in the discretization of
the continuity equation, allowing the vertex-based face velocity to be written in terms of adjacent
pressure values, as follows:

Pseudo-velocity field is defined as

ûi =
∑

nb a
ii
nb(ui )nb + bii

ai
(18)

and a pressure gradient coefficient as

(dui )i = ∇V

ai
(19)

Using Equations (16)–(19) and from principles of conservation an equation can be defined for
velocity on a control volume face ( f ) in terms of adjacent pressures. Here the face pressure gradient
is written in terms of adjacent nodal pressures, using Equation (12), and a face pseudo-velocity
and pressure gradient coefficient can be obtained from nodal values using interpolation functions,
as Equation (11)

(ui ) f = (ûi ) f − (dui ) f

(
�p
�xi

)
f

(20)

The continuity equation (3) is discretized using finite volume methodology giving an equation for
each vertex-based control volume

1

�t
∑
scv

(�scv − �0scv)Vscv +∑
f
� f A f (ui · ni ) f = 0 (21)
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where f is a control volume face, �0 the density at previous time step and scv is the sub-control
volume. Equation (20) is then substituted into Equation (21) giving a discretized continuity equation
in terms of adjacent pressure values which prevents spurious pressure oscillations

1

�t
∑
scv

(qscv − q0scv)Vscv +∑
f
q fA f

∑
i=x, y, z

[
(ûi ) f − (dui ) f

(
�p
�xi

)
f

]
· (ni ) f = 0 (22)

and rearranging gives

1

�t
∑
scv

(�scv − �0scv)Vscv +∑
f
� f A f

∑
i=x, y, z

(dui ) f

(
�p
�xi

)
f
· (ni ) f =∑

f
� f A f ((ûi ) f · (ni ) f ) (23)

3.2. Coupled finite volume method

Obtaining a flow field using vertex-based techniques allows vertex-based velocities to be
employed in the transport of other quantities using cell-centred techniques. Mass is conserved
on the boundary of the vertex-based control volume. Since the element face centroid is a point on
the boundary of the vertex-based control volume, indirectly mass is also conserved over the mesh
element [48]. As mass conservation is enforced over the vertex-based control volume, any errors
resulting from interpolating for element face values also decrease.

The components of velocity are solved and stored at the mesh vertices. These are located at
the corners of the mesh element that forms a CC-FVM control volume. Element face velocity
components, required for the cell-centred discretization of Equations (4), (6), (7) and (10) can be
easily extrapolated from face corner values, thus

(ui ) f =
N∑

n=1

(ui )n
N

(24)

where N is the number of corner vertices of the element face. It is this element face velocity that
is used to calculate the element mass flux in the convection of a transported scalar.

4. 3D CODE VERIFICATION

Verification of the 3D code has been carried out against Ethier and Steinman’s [55] analytical
benchmark solutions for flow. The manufactured solution will likely never be physically realized
but it is an excellent test case since the solution can be imposed on arbitrarily shaped finite
domains by the specification of analytic boundary conditions. The flow field is multidirectional
and complex, providing a challenging case for quantifying the effects of mesh distortion. Figure 3
shows the flow field and meshes employed in the simulations. The mesh is centred at (0,0,0) and
extended 1 unit in all directions. The cubed domain, mesh 1, was discretized using a uniform
nodal spacing from 0.5 to 0.14, giving 6 meshes of varying density. Mesh 1 was then distorted
by various degrees, mesh 2 and mesh 3. Mesh 2 resulted in the mesh containing elements with
angles ranging from 26.57◦ to 151.9◦. Mesh 3 was more severely distorted with element angles
ranging from 3.45◦ to 176.6◦. The analytical solutions used for the Beltrami flow and pressure
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Figure 3. Meshes used for Beltrami flow.

field are as follows:

u=−a[eax sin(ay ± dz) + eaz cos(ax ± dy)] e−d2t

v=−a[eay sin(az ± dx) + eax cos(ay ± dz)] e−d2t

w=−a[eaz sin(ax ± dy) + eay cos(az ± dx)] e−d2t

p=−a2

2

⎡
⎢⎢⎢⎣
e2ax + e2ay + e2az + 2 sin(ax ± dy) cos(az ± dx) ea(y+z)

+ 2 sin(ay ± dz) cos(ax ± dy) ea(z+x)

+ 2 sin(az ± dx) cos(ay ± dz) ea(x+y)

⎤
⎥⎥⎥⎦ e−2d2t

(25)

In all tests the independent constants in Equations (25) were set as a = �/4 and d = �/2. The initial
velocity field at t = 0 was set by Equations (25), resulting in velocities ranging from 1.59 to −3.31
with a 22% decay after time t = 0.1. Dirichlet boundary conditions, also based on Equations (25)
were applied to all external faces. Figure 4 shows a graph of the normalized L2 error, defined as

error= ‖u − uexact‖L2

‖uexact‖L2

(26)

On the orthogonal mesh the vertex-based code resulted in a velocity error in the order of 10−4 for
the fine mesh and 10−3 for the coarser meshes. The cell-centred code resulted in a slightly larger
error of 10−2 for the velocity field and 10−1 for the pressure field. The cell-centred discretization
results in a weaker formulation, as the solution points are located internal to the boundary and the
analytic boundary conditions enter the solution in the source term. On the distorted mesh 2, the
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Figure 4. Beltrami flow: error solving vertex-based (vb) and cell-centred (cc).

Figure 5. Thermally driven flow, Rayleigh number 105.

vertex-based error was less than the error obtained with the cell-centred code on the orthogonal
mesh. The cell-centred formulation failed to converge on mesh 3, whereas the vertex-based method
gave solutions on the coarse mesh with element angles ranging from 9.5◦ to 170.5◦ with an error
of the order of 10−2 for the velocity field and 10−1 for the pressure field. As the density of mesh 3
was increased, the minimum element angle reduced and the vertex-based code failed to converge.

This verification case illustrates the ability of the vertex-based flow code to handle distortion
in a mesh with greater accuracy than the cell-centred approach. Although the vertex-based code
has a breaking point, in this case with element angles below 9.5◦, the method continues to give
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solutions beyond the non-orthogonal capabilities of the cell-centred code. The question here is at
what cost? On a mesh comprising of 3375 nodes and 2744 elements, the memory requirements
per solution point for the flow variables were 879 bytes for the vertex-based code and 249 bytes
for the cell-centred code. The computer time per iteration per solution point was 7.35×10−5 s and
2.00×10−5 s for vertex-based and cell-centred, respectively. In summary the vertex-based required
approximately 3.5 times more memory than the cell-centred code and approximately 4 times more
compute time for simulations with similar convergence. The number of iterations required to
achieve convergence is case dependent. The extra memory required for the vertex-based code can
be explained by the increase in stored face quantities. On a hexahedral mesh the vertex-based
control volume comprises of 24 faces compared to 6 cell-centred. This increased discretization
requires greater computational effort and produces a solution matrix with a possible 27 non-zero
coefficients compared to a possible 7 non-zero coefficients in the cell-centred discretized equation.

5. EVALUATION OF THE METHOD

Results have been evaluated on a number of benchmark problems, including thermally driven flow,
where the effect of mesh distortion is investigated and turbulent flow, where the effect of mesh
resolution is investigated. The approach is then applied to three-dimensional turbulent flow over an
aircraft wing. Results are compared for a uniform mesh and distorted versions of the same mesh.

5.1. Thermally driven flow

De Vahl Davis [56] suggested that buoyancy-driven flow in a square cavity would be a suitable
validation test case for CFD codes and published a set of benchmark results for a number of different
Rayleigh numbers. Declining quality in solutions is often encountered with increasing Rayleigh
number. The fluid contained in the cavity is assumed incompressible and initially stationary.
Thermal gradients across the solution domain result from opposing walls of differing temperatures.
These thermal gradients lead to buoyancy forces that create flow, see Figure 5. The simulations
were performed on a Athlon 1.39Ghz processor for a uniform 35 × 35 Cartesian mesh, mesh 1,
and distorted versions of mesh 1, shown in Figure 6. Plots of the u-velocity along the central
vertical plane and the v-velocity along the central horizontal plane for each mesh and Rayleigh
number are shown along with the benchmark maximum values. For a Rayleigh number of 103,
Figure 7 shows the velocity plots for both the CFVM and CC-FV method. As can be seen from
these plots the error due to mesh distortion is much smaller in the CFVM results. On the distorted
meshes the CFVM slightly under predicts the maximum value due to the coarseness of the mesh
in this region

Table I shows Umax and Vmax, the maximum value of the normalized velocity component along
the central planes for mesh 1. The Ymax and Xmax, are the normalized positions of this maximum
value. The percentage errors of the simulation results against benchmark solutions are shown
in brackets for each Rayleigh number (Ra). A measure of the error, due to mesh distortion,
for meshes 2 and 3 is shown in Table II, using mesh 1 as the base result. Divergence was
encountered on mesh 3 for a Rayleigh number of 106. Good agreement with benchmark solutions
were obtained on the uniform mesh and the solutions only slightly degraded on the distorted
meshes (Figure 8).
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Figure 6. Distorted versions of Cartesian mesh 1, mesh 2 (left), mesh 3 (right).

Figure 7. Velocity plots for Rayleigh number of 103.

5.2. Turbulent flow—backward facing step

In this case fluid enters the domain through a channel of height H and flows over a step of height
h into a channel of height (H + h). The case simulated here employs an outflow channel that is
three times the height of the step, where the step height is set to 0.1m. The geometry and boundary
conditions are shown in Figure 9, where H = 2h. The material properties are set to those of air
and the inflow velocity Uin is varied to give the required Reynolds number. A no-slip boundary
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Table I. Percentage error with benchmark values.

Ra Umax Ymax Vmax Xmax

103 3.638 0.189 0.686 0.178
(0.29%) (1.0%) (0.27%) (0.12%)

104 16.194 0.178 19.570 0.122
(0.10%) (0.43%) (0.24%) (2.6%)

105 34.780 0.144 69.600 0.067
(0.14%) (0.38%) (1.47%) (0.97%)

106 63.867 0.144 219.85 0.0333
(1.18%) (3.71%) (0.22%) (12.1%)

Table II. Error due to mesh distortion.

Mesh 2 Mesh 2 Mesh 3 Mesh 3
Ra u-velocity v-velocity u-velocity v-velocity

103 4.74 × 10−3 4.71 × 10−3 3.68 × 10−2 3.32 × 10−2

104 7.82 × 10−3 8.39 × 10−3 3.24 × 10−2 3.72 × 10−2

105 1.94 × 10−2 1.58 × 10−2 4.78 × 10−2 1.28 × 10−2

106 9.28 × 10−2 3.94 × 10−2 — —

condition u = v = 0.0 is applied to the wall. The outflow boundary location is positioned 20 step
heights downstream of the step, to limit its influence on the simulation. Pressure is set to zero at
the outlet. The inflow boundary is positioned five step heights upstream of the step to allow the
formation of a fully turbulent velocity profile before the step is reached. Positioning the inlet some
distance away from the step avoids having precise inlet conditions for the turbulent quantities. The
inflow turbulent quantities were estimated as

Kin = 1
4 0.018U

2
in

�in = 0.1643k1.5in

0.09h

(27)

As the fluid flows over the step it detaches from the wall and reattaches on the bottom wall
at a distance xR from the step. It is this reattachment length xR that is commonly used for
validation purposes. The experimental data for this case [57] indicates a reattachment length of
approximately (7.0±0.5)h with only slight variation for flows of differing Reynolds numbers. The
standard k–� model has been shown by many authors, including Nallasamy and Chen [58] to under-
predict the reattachment point, giving a value of xR within the range 5.8–6.1 step heights along
the bottom wall.

The simulations were performed initially on a mesh consisting of 5200 elements. The u-velocity
at the inlet was set to give Reynolds numbers of 30 000, 50 000, 70 000 and 90 000. For all the
Reynolds numbers investigated, the reattachment length, xR, is at a distance of 6 step heights
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Figure 8. Velocity plots for CFVM, Rayleigh numbers 104, 105 and 106.

downstream. This value is well within the expected range. There appears to be very little difference
in the results of the CFVM and CC-FVM discretization methods. To investigate the effect of mesh
resolution simulations were also performed on coarser meshes of 1400 and 3588 elements for a
Reynolds number of 50 000. As can be seen from the plots of the wall u-velocity values, Figure 10,
the CFVM method still gave good predictions of the reattachment point, xR = 5.7h on the 1400
element mesh and, xR = 5.8h on the 3588 element mesh. Whereas, the purely cell-centred method
under-predicted xR on the coarser meshes, xR = 5.0h and xR = 5.2h for the 1400 and 3588 element
meshes, respectively. Simulations were also performed on a mesh containing regions of distorted
quadrilateral and triangle elements. An angle test was performed on the elements to measure
the mesh quality, an ideal angle is dependent on the element type, ideally a quadrilateral element
should have 4 angles of 90◦ whereas a triangle element should have 3 angles of 60◦. An acceptable
angle for a triangle element was set as; minimum angle of 35◦ and maximum angle of 145◦, for
a quadrilateral element as; minimum angle of 30◦ and maximum angle of 150◦. Twenty percent
of the elements in the mesh failed the quality test with angles ranging from 10.6◦ to 170.7◦.
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Figure 9. Geometry, boundary conditions and turbulent flow results.

Figure 10. u-velocity along wall.
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Figure 11. Unstructured distorted mesh.

Figure 11 shows a section of the mesh in the step expansion region, the enlarged area shows
an example of bad quality mesh. Contour plots of the resultant velocity field on the distorted
unstructured mesh, are shown in Figure 12 for CC-FVM and CFVM, respectively. The solutions
were considered converged when the L2 norm of the change in the solution of all the variables
fell to 10−4. Employing the CC-FVM failed to give converged solutions and oscillating residuals
were encountered. The solutions obtained degraded in regions of bad mesh quality. The CFVM
gave converged solutions with minimal influence of the mesh quality.

5.3. Turbulent flow over a three-dimensional aircraft wing

Finally the CFVM is employed in the simulation of flow over an aircraft wing. The geometry of the
wing was taken from ONERA M6 specifications [59]. Many authors have investigated transonic
flow over the ONERAM6 wing, at Mach numbers of 0.7 and above, i.e. supersonic flow, shock and
turbulent boundary layer separation at various angles of attack. It is beyond the scope of this paper
to investigate the complexities of transonic flow, the simulations carried out employ low-speed
Mach number of 0.3. The aim of the simulations is to illustrate the CFVM on a three-dimensional
problem and investigate its performance when the mesh is distorted. The ONERA M6 is a swept,
semi-span wing with no twist. The leading-edge sweep is 30◦, trailing edge sweep 15.8◦ and the
taper ratio is 0.562. The simulation carried out employs a low speed Mach number of 0.3, giving a
Reynolds number of about 5 million. A wall boundary condition was applied to the wing surface
for the flow and turbulence model variables. The simulation was performed on a uniform C-Mesh
of approximately 100 000 elements and a distorted version of the mesh, Figure 13. This is a
relatively coarse mesh, with complex flow simulations of flow over the ONERA wing a mesh of at
least three to four hundred thousand elements is normally employed. However, the mesh density
here is sufficient to explore the performance of the CFVM on a ‘real-life’ distorted mesh.

At the outset it is worth saying that on the C-mesh, the CFVM method and the conventional
CC discretization results are very similar in most respects. However, as the mesh is degraded
the purely CC method fails, whereas the CFVM continues to produce solutions. A mesh quality
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Figure 12. Resultant velocity contour plots on distorted mesh: (a) CC-FVM; and (b) CFVM.

Figure 13. C-mesh and distorted version C-mesh.
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Figure 14. Section of the distorted C-mesh showing mesh quality.

Figure 15. Mach number contour plots on plane z = 0.558: (a) C-mesh; and (b) distorted C-mesh.

test was performed on the distorted mesh and of the 101 412 elements 26 100 were considered
to be of poor quality with angles below 30◦ or above 150◦, with angles ranging from 3◦ to
178◦. Figure 14 shows a section of the distorted mesh showing elements with angles below a
minimum value of 30◦ or above a maximum value of 150◦. The results are shown for the CFVM

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:81–104
DOI: 10.1002/fld



100 D. McBRIDE, T. N. CROFT AND M. CROSS

Figure 16. Mach number contour plots on plane y = 0: (a) C-mesh; and (b) distorted C-mesh.

on both the C-mesh and the distorted mesh, plots are shown on two planes, z = 0.558 which is
approximately half the wing span, and y = 0 which is the symmetry plane. Figures 15 and 16
show the mach contour plots for the z- and y-plane, respectively. Although there is some smearing
of values on the distorted mesh, the results have captured the overall trend, identifying local
minimum and maximum values. The u- and w-velocity value range remained unchanged, being
[0–107m/s] and [−6.37–39m/s], respectively. The minimum and maximum v-velocity values
decreased slightly from [−49.3m/s, 49.3m/s] to [−40.4m/s, 40.4m/s] on the distorted mesh.
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Figure 17. Viscosity contour plots on plane z = 0.558: (a) C-mesh; and (b) distorted C-mesh.

The turbulent viscosity contours, Figure 17, show some smearing of values on the distorted mesh.
The lower velocity values downstream of the wing’s trailing edge, on the distorted mesh, result in
higher turbulent generation rates in this region and hence higher viscosity values. This is caused by
the way that the turbulence generation rate is represented numerically at the sharp rear of the wing
shape (McBride, 2003) and can be eliminated with a more careful approximation. The maximum
turbulent viscosity obtained on the C-mesh was 0.03m2/s compared to 0.06m2/s on the distorted
mesh.

5.3.1. Run times and memory requirements. The simulations were performed on a Pentium 4
CPU 2.54GHz. The mesh employed comprised of 101 412 elements and 108 314 vertices. To
achieve the convergence criteria that the L2 norm of the change in the solution dropped by 5
orders-of-magnitude required 254 iterations on the uniform C-mesh and 302 iterations on the
distorted mesh. The time per iteration/per solution point was approximately 3.3× 10−5 s for each
variable being solved vertex-based and 7.0 × 10−6 s for each variable being solved cell-centred.
This gives a time per iteration of 15.72 s for CFVM solutions and 4.26 s for CC solutions. The
vertex-based method has considerably more memory requirements than the cell-centred method.
The approximate memory required per solution point is 373 bytes vertex-based compared to 42
bytes cell-centred.

6. CONCLUSIONS

The coupling of the vertex-based discretization method with well established cell-centred methods
for CFD analysis of flow processes has been presented. Employing the vertex-based technique to
obtain good resolution of the flow field has been shown to enable well established cell-centred
algorithms to be employed in the solution of other transported quantities (e.g. thermal, turbulent
variables). The cell-centred discretization of the transported quantities still includes non-orthogonal
errors that may in turn introduce some error into the flow field. However, it is encouraging that
the non-orthogonal errors do not appear to significantly affect the final solution. Comparison with
benchmark problems indicate that the method degrades only slightly on highly distorted meshes
and handles areas of poor mesh resolution reasonably well. The method can be applied to any
kind of mixed polyhedral mesh up to hexahedral elements. It has the potential to deliver solutions
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on extremely complex geometries with meshes that necessarily have some poor quality elements
and so are beyond the capabilities of conventional cell-centred based CFD analysis.

Although the CFVM is approximately 4 times more expensive in compute time than the CC-FV
method, the coupled method does enable solutions on extremely complex geometries with meshes
of poor quality making this approach a particularly useful CFD tool. However, with the flexibility
of using meshes which tolerate elements with poor quality then one might argue, that a reduced
mesh is required which will compensate for any increased compute time per node. In the form
described here, the CFVM method can be straightforwardly used as an ‘add in’ on existing CC-FV
software, exploiting all existing models that have been developed with in this context.
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